线性代数论文辅导

焦点论文专业指导论文写作,辅导范围覆盖绝大部分论文类型,详细情况请访问网站:http://www.jiaodianlunwen.com

线性方程组的解法,早在中国古代的数学著作《九章算术方程》中已作了比较完整的论述。其中所述方法实质上相当于现代的对方程组的增广矩阵施行初等行变换从而消去未知量的方法,即高斯消元法。在西方,线性方程组的研究是在 17 世纪后期由莱布尼茨开创的。他曾研究含两个未知量的三个线性方程组组成的方程组。麦克劳林在 18 世纪上半叶研究了具有二、三、四个未知量的线性方程组,得到了现在称为克莱姆法则的结果。克莱姆不久也发表了这个法则。 18世纪下半叶,法国数学家贝祖对线性方程组理论进行了一系列研究,证明了元齐次线性方程组有非零解的条件是系数行列式等于零。
19 世纪,英国数学家史密斯(H.Smith) 和道奇森(C-L.Dodgson) 继续研究线性方程组理论,前者引进了方程组的增广矩阵和非增广矩阵的概念,后者证明了个未知数个方程的方程组相容的充要条件是系数矩阵和增广矩阵的秩相同。这正是现代方程组理论中的重要结果之一。
大量的科学技术问题,最终往往归结为解线性方程组。因此在线性方程组的数值解法得到发展的同时,线性方程组解的结构等理论性工作也取得了令人满意的进展。现在,线性方程组的数值解法在计算数学中占有重要地位。

焦点论文论文服务查询:http://www.jiaodianlunwen.com/services

2016-11-04T16:33:33+00:00